

Beyond PLANCK

CMB analysis with end-to-end error propagation: Likelihood and Cosmological Parameter

Simone Paradiso

BeyondPlanck online release conference, November 18-20, 2020

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 776282

• BeyondPlanck main processing:

$$\left(\mathsf{S}^{-1} + \sum_{\nu} \mathsf{M}_{\nu}^{t} \mathsf{B}_{\nu}^{t} \mathsf{N}_{\nu}^{-1} \mathsf{B}_{\nu} \mathsf{M}_{\nu}\right) \boldsymbol{a} = \sum_{\nu} \mathsf{M}_{\nu}^{t} \mathsf{B}_{\nu}^{t} \mathsf{N}_{\nu}^{-1} \boldsymbol{m}_{\nu} + \sum_{\nu} \mathsf{M}_{\nu}^{t} \mathsf{B}_{\nu}^{t} \mathsf{N}_{\nu}^{-1/2} \eta_{\nu} + \mathsf{S}^{-1/2} \eta_{0}.$$

• BeyondPlanck main processing:

$$S = 0$$

$$\left(\mathbf{S}^{-1} + \sum_{\nu} \mathbf{M}_{\nu}^{t} \mathbf{B}_{\nu}^{t} \mathbf{N}_{\nu}^{-1} \mathbf{B}_{\nu} \mathbf{M}_{\nu} \right) \boldsymbol{a} = \sum_{\nu} \mathbf{M}_{\nu}^{t} \mathbf{B}_{\nu}^{t} \mathbf{N}_{\nu}^{-1} \boldsymbol{m}_{\nu} + \sum_{\nu} \mathbf{M}_{\nu}^{t} \mathbf{B}_{\nu}^{t} \mathbf{N}_{\nu}^{-1/2} \eta_{\nu} + \mathbf{S}^{-1/2} \eta_{0}.$$

• BeyondPlanck main processing:

European Commission

$$S = 0$$

$$\left(\mathbf{S}^{-1} + \sum_{\nu} \mathbf{M}_{\nu}^{t} \mathbf{B}_{\nu}^{t} \mathbf{N}_{\nu}^{-1} \mathbf{B}_{\nu} \mathbf{M}_{\nu} \right) \boldsymbol{a} = \sum_{\nu} \mathbf{M}_{\nu}^{t} \mathbf{B}_{\nu}^{t} \mathbf{N}_{\nu}^{-1} \boldsymbol{m}_{\nu} + \sum_{\nu} \mathbf{M}_{\nu}^{t} \mathbf{B}_{\nu}^{t} \mathbf{N}_{\nu}^{-1/2} \eta_{\nu} + \mathbf{S}^{-1/2} \eta_{0}.$$

Low resolution resampling $\rightarrow 4 \cdot 10^4$ CMB samples at NSIDE=32

• BeyondPlanck main processing:

European Commission

$$S \neq 0$$

$$\left(\mathbf{S}^{-1} + \sum_{\nu} \mathbf{M}_{\nu}^{t} \mathbf{B}_{\nu}^{t} \mathbf{N}_{\nu}^{-1} \mathbf{B}_{\nu} \mathbf{M}_{\nu}\right) \boldsymbol{a} = \sum_{\nu} \mathbf{M}_{\nu}^{t} \mathbf{B}_{\nu}^{t} \mathbf{N}_{\nu}^{-1} \boldsymbol{m}_{\nu} + \sum_{\nu} \mathbf{M}_{\nu}^{t} \mathbf{B}_{\nu}^{t} \mathbf{N}_{\nu}^{-1/2} \eta_{\nu} + \mathbf{S}^{-1/2} \eta_{0}.$$

Low resolution resampling $\rightarrow 4 \cdot 10^4$ CMB samples at NSIDE=32

High resolution resampling \rightarrow 900 CMB samples at full resolution, with spatial prior \neq 0

• BeyondPlanck main processing:

European Commission

$$\left(\mathsf{S}^{-1} + \sum_{\nu} \mathsf{M}_{\nu}^{t} \mathsf{B}_{\nu}^{t} \mathsf{N}_{\nu}^{-1} \mathsf{B}_{\nu} \mathsf{M}_{\nu} \right) \boldsymbol{a} = \\ \sum_{\nu} \mathsf{M}_{\nu}^{t} \mathsf{B}_{\nu}^{t} \mathsf{N}_{\nu}^{-1} \boldsymbol{m}_{\nu} + \sum_{\nu} \mathsf{M}_{\nu}^{t} \mathsf{B}_{\nu}^{t} \mathsf{N}_{\nu}^{-1/2} \eta_{\nu} + \mathsf{S}^{-1/2} \eta_{0}.$$

Low resolution resampling $\rightarrow 4 \cdot 10^4$ CMB samples at NSIDE=32

High resolution resampling \rightarrow 900 CMB samples at full resolution, with spatial prior $\neq 0$

Provided a set of samples drawn from the full data posterior distribution \rightarrow complete end-to-end uncertainty propagation of the sampled parameters

- Overall coverage of the multipoles from $\ell = 2$ up to $\ell = 600$ in TT spectrum.
- Information from polarization E modes, and cross-correlation TE, from multipoles in the range [2 – 8].

- Overall coverage of the multipoles from $\ell = 2$ up to $\ell = 600$ in TT spectrum.
- Information from polarization E modes, and cross-correlation TE, from multipoles in the range [2 – 8].

Low-*t* pixel-based Likelihood

European Commission

TT-TE-EE in $2 \le \ell \le 8$

$$P(C_{\ell}|\hat{s}_{CMB}) \propto \frac{e^{-\frac{1}{2}\,\hat{s}^t\,_{CMB}(S(C_{\ell})+N)^{-1}\,\,\hat{s}_{CMB}}}{|S(C_{\ell})+N|^{\frac{1}{2}}}$$

BeyondPlanck Likelihood

- Overall coverage of the multipoles from $\ell = 2$ up to $\ell = 600$ in TT spectrum.
- Information from polarization E modes, and cross-correlation TE, from multipoles in the range [2 – 8].

Low-*t* pixel-based Likelihood

European Commission

TT-TE-EE in $2 \le \ell \le 8$

$$P(C_{\ell}|\hat{s}_{CMB}) \propto \frac{e^{-\frac{1}{2}\,\hat{s}^t\,_{CMB}(S(C_{\ell})+N)^{-1}\,\,\hat{s}_{CMB}}}{|S(C_{\ell})+N|^{\frac{1}{2}}}$$

High-ℓ likelihood based upon Gaussianized Blackwell-Rao estimator

TT only in $9 \le \ell \le 600$

 $N_{CMB}^{-1/2} s_{CMB}$

• Direct CMB map and NCVM estimation from $\sim 4 \cdot 10^4$ low resolution samples.

European Commission

$$\hat{s}_{CMB} = \langle s^{i}_{CMB} \rangle$$
$$\mathsf{N} = \langle \left(s^{i}_{CMB} - s_{CMB} \right) \left(s^{i}_{CMB} - s_{CMB} \right)^{t} \rangle$$

• Karhunen-Loève compression to isolate only significant modes.

Filter out S/N eigenmodes under a threshold 10^{-6} and multipoles below $\ell_t = 8$.

• Direct CMB map and NCVM estimation from $\sim 4 \cdot 10^4$ low resolution samples.

European Commission

$$\hat{s}_{CMB} = \langle s^{i}_{CMB} \rangle$$
$$\mathsf{N} = \langle \left(s^{i}_{CMB} - s_{CMB} \right) \left(s^{i}_{CMB} - s_{CMB} \right)^{t} \rangle$$

• Karhunen-Loève compression to isolate only significant modes.

Filter out S/N eigenmodes under a threshold 10^{-6} and multipoles below $\ell_t = 8$.

 Gaussianized Blackwell-Rao (Rudjord et al. 2009) estimator from 900 high resolution resampled CMB maps.

European Commission

• Low S/N ratio in polarization at $\ell > 10 \rightarrow$ Only temperature

 Gaussianized Blackwell-Rao (Rudjord et al. 2009) estimator from 900 high resolution resampled CMB maps.

European Commission

• Low S/N ratio in polarization at $\ell > 10 \rightarrow$ Only temperature

$$P(C_{\ell} \mid \boldsymbol{d}) \approx \frac{1}{N_G} \sum_{i=1}^{N_G} P(C_{\ell} \mid \sigma_{\ell}^i)$$

 Gaussianized Blackwell-Rao (Rudjord et al. 2009) estimator from 900 high resolution resampled CMB maps.

European Commission

• Low S/N ratio in polarization at $\ell > 10 \rightarrow$ Only temperature

$$P(C_{\ell} \mid \boldsymbol{d}) \approx \frac{1}{N_{G}} \sum_{i=1}^{N_{G}} P(C_{\ell} \mid \sigma_{\ell}^{i})$$
$$P(C_{\ell} \mid \boldsymbol{d}) = \left(\prod_{\ell} \frac{\partial C_{\ell}}{\partial x_{\ell}}\right)^{-1} P(\boldsymbol{x} \mid \boldsymbol{d})$$
$$P(\boldsymbol{x} \mid \boldsymbol{d}) \approx e^{-\frac{1}{2} (\boldsymbol{x} - \mu)^{T} \mathbf{C}^{-1} (\boldsymbol{x} - \mu)}$$

 Gaussianized Blackwell-Rao (Rudjord et al. 2009) estimator from 900 high resolution resampled CMB maps.

European Commission

> Low S/N ratio in polarization at ℓ > 10 → Only temperature

> > ~ null correlation length

 Gaussianized Blackwell-Rao (Rudjord et al. 2009) estimator from 900 high resolution resampled CMB maps.

European Commission

• Low S/N ratio in polarization at $\ell > 10 \rightarrow$ Only temperature

~ null correlation length

longer correlation length, but still good convergency

European Commission

> 400 σ_2^{TT} (μK^2) Gaussianized Blackwell-Rao (Rudjord et al. 2009) estimator 200 from 900 high resolution resampled CMB maps. 6000 Low S/N ratio in polarization at $\sigma_{200}^{TT} (\mu K^2)$ 5000 600 $\ell > 10 \rightarrow$ Only temperature ~ null correlation length 2600 $\sigma_{600}^{TT} \left(\mu \mathsf{K}^2 \right)$ 2300 longer correlation length, but still good convergency 2000 $\sigma_{800}^{TT} (\mu {\rm K}^2)$ 10 3500 Even longer corr. length 2500 20 40 60 0 Sample number

European Commission

Stable parameter estimates up to $\ell = 600$

	BEYONDPLANCK GBR			
Parameter	$\ell_{\rm max} = 400$	$\ell_{\rm max} = 600$	Δ	
$\overline{oldsymbol{\Omega}_b h^2}$	0.0229 ± 0.0018	0.0227 ± 0.0013	0.1σ	
$\Omega_c h^2$	0.129 ± 0.028	0.116 ± 0.018	0.5σ	
$100\theta_{MC}$	1.049 ± 0.011	1.041 ± 0.006	0.7σ	
$A_s e^{-2\tau}$	2.01 ± 0.26	1.85 ± 0.15	0.6σ	
n_s	1.011 ± 0.054	0.980 ± 0.036	0.6 <i>o</i>	

Colombo et al. 2020

European Commission

BeyondPlanck BeyondPlanck + Planck 2018 High-*l* BEYONDPLANCK PARAMETER $\ell \leq 600$ +Planck $\ell > 600$ 0.20 0.16 Ω^Cμ² $\Omega_{
m b} h^2$ 0.02202 ± 0.00091 0.02224 ± 0.00022 $\Omega_{
m c}h^2$ 0.115 ± 0.017 0.1224 ± 0.0025 0.12 $\Omega_{\Lambda} \ \ldots \ldots \ldots \ldots$ $\begin{matrix}1.06\\900\\1.05\\1.04\end{matrix}$ $100\theta_{MC}$ 1.0390 ± 0.0049 1.04061 ± 0.00048 0.066 ± 0.016 0.074 ± 0.015 τ $10^9\Delta_R^2$ 1.03 $\ln(10^{10}A_{\rm s})$ 3.035 ± 0.080 3.087 ± 0.029 0.960 ± 0.020 0.9632 ± 0.0060 $n_{\rm s}$ 0.10 H 0.05 اn(10¹⁰As) د ۲۶ 1.05 ہ 1.00 ت 0.95 0.021 0.025 3.0 3.2 0.96 0.12 0.18 1.04 1.06 0.05 0.10 1.04 $\Omega_b h^2$ $\Omega_c h^2$ $\ln(10^{10}A_s)$ $100\theta_{MC}$ τ ns

	BEYONDPLANCK		Planck 2018		WMAP	
Parameter	$\ell \le 600$	+Planck $\ell > 600$	Estimate	$\Delta(\sigma)$	Estimate	$\Delta(\sigma)$
$\overline{\Omega_{\rm b}h^2}$	0.02202 ± 0.00091	0.02224 ± 0.00022	0.02237 ± 0.00015	-0.4	0.02243 ± 0.00050	-0.5
$\Omega_{\rm c} h^2$	0.115 ± 0.017	0.1224 ± 0.0025	0.1200 ± 0.0012	-0.3	0.1147 ± 0.0051	0
Ω_{Λ}	••••				0.721 ± 0.025	
$100\theta_{MC}$	1.0390 ± 0.0049	1.04061 ± 0.00048	1.04092 ± 0.00031	-0.4		
τ	0.066 ± 0.016	0.074 ± 0.015	0.054 ± 0.007	0.8	0.089 ± 0.0014	-1.5
$10^9\Delta^2_{\varphi}$	•••			•••	2.41 ± 0.10	• • •
$\ln(10^{10}A_s)$	3.035 ± 0.080	3.087 ± 0.029	3.044 ± 0.014	-0.1	•••	•((•)
$n_{\rm s}$	0.960 ± 0.020	0.9632 ± 0.0060	0.9649 ± 0.0042	-0.3	0.972 ± 0.013	-0.6

	Contraction of the local division of the loc
uronoan	_
uropean	
Commission	

Parameter	BEYONDPLANCK		Planck 2018		WMAP	
	$\ell \le 600$	+Planck $\ell > 600$	Estimate	$\Delta(\sigma)$	Estimate	$\Delta(\sigma)$
$\overline{\Omega_{\rm b} h^2}$	0.02202 ± 0.00091	0.02224 ± 0.00022	0.02237 ± 0.00015	-0.4	0.02243 ± 0.00050	-0.5
$\Omega_{\rm c} h^2$	0.115 ± 0.017	0.1224 ± 0.0025	0.1200 ± 0.0012	-0.3	0.1147 ± 0.0051	0
Ω_{Λ}					0.721 ± 0.025	• • •
$100\theta_{MC}$	1.0390 ± 0.0049	1.04061 ± 0.00048	1.04092 ± 0.00031	-0.4		• • •
τ	0.066 ± 0.016	0.074 ± 0.015	0.054 ± 0.007	0.8	0.089 ± 0.0014	-1.5
$10^9\Delta_{\mathcal{R}}^2$	••• •			• • •	2.41 ± 0.10	
$\ln(10^{10}A_s)$	3.035 ± 0.080	3.087 ± 0.029	3.044 ± 0.014	-0.1	•••	
$\underline{n_{\mathrm{s}}}$	0.960 ± 0.020	0.9632 ± 0.0060	0.9649 ± 0.0042	-0.3	0.972 ± 0.013	-0.6

Only LFI and WMAP \rightarrow major contribution to larger uncertainties

$\ell \le 600$	+Planck $\ell > 600$	Estimate	A (-)		
		25 Invite	$\Delta(\sigma)$	Estimate	$\Delta(\sigma)$
0.02202 ± 0.00091 0.115 ± 0.017	0.02224 = 0.00022 0.1224 = 0.0025	$\begin{array}{c} 0.02237 \pm 0.00015 \\ 0.1200 \pm 0.0012 \end{array}$	-0.4 -0.3	$\begin{array}{c} 0.02243 \pm 0.00050 \\ 0.1147 \pm 0.0051 \end{array}$	-0.5 0
 1.0390 ± 0.0049	 1.04061 ⊭ 0.00048	 1.04092 ± 0.00031	 -0.4	0.721 ± 0.025	•••
0.066 ± 0.016 	0.074 <u>=</u> 0.015	0.054 ± 0.007	0.8 	$\begin{array}{c} 0.089 \pm 0.0014 \\ 2.41 \pm 0.10 \end{array}$	-1.5
3.035 ± 0.080 0.960 ± 0.020	3.087 = 0.029 0.9632 = 0.0060	3.044 ± 0.014 0.9649 ± 0.0042	-0.1 -0.3	 0.972 ± 0.013	 -0.6
	$\begin{array}{c} 0.02202 \pm 0.00091 \\ 0.115 \pm 0.017 \\ & & \\ 1.0390 \pm 0.0049 \\ 0.066 \pm 0.016 \\ & & \\ 3.035 \pm 0.080 \\ 0.960 \pm 0.020 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

BeyondPlanck + Planck 2018 + Lensing + BAO

European Commission

BeyondPlanck

BeyondPlanck + Planck 2018 High-*l*

BeyondPlanck + Planck 2018 High-*l* + Lensing + BAO

End-to-end error propagation

Propagating uncertainties through the whole processing up to cosmological parameter estimation

End-to-end error propagation

End-to-end error propagation

Summary

European Commission

• We estimated cosmological parameter within a global Bayesian analysis framework.

Summary

- We estimated cosmological parameter within a global Bayesian analysis framework.
- Implemented two likelihoods, a low-*l* pixel-based for both temperature and polarization, and a GBR based one, for higher TT multipoles.

Summary

- We estimated cosmological parameter within a global Bayesian analysis framework.
- Implemented two likelihoods, a low-*l* pixel-based for both temperature and polarization, and a GBR based one, for higher TT multipoles.
- Showed the impact of marginalizing over model parameters, in terms of τ posterior uncertainty.

European Commission

- We estimated cosmological parameter within a global Bayesian analysis framework.
- Implemented two likelihoods, a low-*l* pixel-based for both temperature and polarization, and a GBR based one, for higher TT multipoles.
- Showed the impact of marginalizing over model parameters, in terms of τ posterior uncertainty.

The point was to show how methodology can provide cosmological parameter estimates, along with correctly propagating model parameters uncertainties throughout the analysis pipeline.

The BeyondPlanck collaboration

EU-funded institutions

European Commission

> Kristian Joten Andersen **Ragnhild Aurlien** Ranajoy Banerji Maksym Brilenkov Hans Kristian Eriksen Johannes Røsok Eskilt Marie Kristine Foss Unni Fuskeland Eirik Gjerløw Mathew Galloway **Daniel Herman** Ata Karakci Håvard Tveit Ihle Metin San **Trygve Leithe Svalheim** Harald Thommesen Duncan Watts Ingunn Kathrine Wehus

Marco Bersanelli Loris Colombo **Cristian Franceschet Davide Maino** Aniello Mennella Simone Paradiso

HELSINGIN YLIOPISTO

HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINK

Sara Bertocco Samuele Galeotta Gianmarco Maggio Michele Maris Daniele Tavagnacco Andrea Zacchei

Elina Keihänen Anna-Stiina Suur-Uski

External collaborators

Brandon Hensley

Jeff Jewell

Reijo Keskitalo

Bruce Partridge

Stelios Bollanos Stratos Gerakakis Maria leoronymaki Ilias Ioannou

Martin Reinecke

Funding

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 776282

• *"BeyondPlanck"*

- COMPET-4 program
- PI: Hans
 Kristian Eriksen
- Grant no.: 776282
- Period:
 2020

Mar 2018 to Nov

Collaborating projects:

0

- "bits2cosmology"
 - ERC Consolidator Grant
 - PI: Hans Kristian Eriksen
 - Grant no: 772 253
 - Period: April 2018 to March 2023

- "Cosmoglobe"
 - ERC Consolidator Grant
 - **PI:**

- Ingunn Wehus
- Grant no: 819 478
- Period: June 2019 to May 2024

Questions?

European Commission

Beyond PLANCK **** Co

Commander

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

JPL

Cosmoglobe Beyond

Backups

Low-*l* likelihood – why KL compression?

