

Motivation and main results Hans Kristian Eriksen

Beyond PLANCK

BeyondPlanck online release conference, November 18-20, 2020

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 776282

Planck 2018 frequency maps

Planck 2018 CMB temperature map

CMB power spectra and cosmological parameters

European Commission

Parameter	Plik best fit
$\overline{\Omega_{ m b}h^2}$	0.022383
$\Omega_{\rm c}h^2$	0.12011
$100\theta_{MC}$	1.040909
au	0.0543
$\ln(10^{10}A_{\rm s})$	3.0448
$n_{\rm s}$	0.96605
$\Omega_{\rm m} h^2$	0.14314
H_0 [km s ⁻¹ Mpc ⁻¹]	67.32
Ω_m	0.3158
Age[Gyr]	13.7971
$\sigma_8 \ldots \ldots \ldots \ldots$	0.8120
$S_8 \equiv \sigma_8 (\Omega_{\rm m}/0.3)^{0.5}$	0.8331
$Z_{\rm re}$	7.68
$100\theta_*$	1.041085
$r_{\rm drag}$ [Mpc]	147.049

Planck (2018), A&A, 641, A5

What about Planck - WMAP?

Planck (2018), A&A, 641, A2

Known poorly measured modes in Planck and WMAP

Can we address the outstanding issues seen in Planck LFI by:

- 1. speeding up the iteration process, and perform hundreds of component separation + calibration iterations, not just four?
- 2. break internal Planck-specific degeneracies using external data, in particular WMAP?

The name BeyondPlanck was chosen to

- recognize that this work builds on, and is a natural continuation of, the official Planck analysis effort
- emphasize that this involves not only Planck, but also other data sets

Why do we care?

9

Gravitational waves from black holes

European Commission

Gravitational waves from the Big Bang

European Commission

The sky is more than four orders of magnitude brighter than the signal! \bigcup

Need extremely accurate component separation and control of instrumental systematic effects!

European Commission

Beyond

CMB's "chicken and egg" problem

Need to know the instrument to measure the sky...

European Commission

... but also need to know the sky in order to calibrate the instrument!

Classic CMB analysis

End-to-end iterative analysis

Main goals of the BeyondPlanck project:

- Implement an end-to-end analysis framework for current and future CMB experiments using Planck experience
- Demonstrate this framework with Planck LFI data
- Make software and results publicly available under an OpenSource license

The BeyondPlanck collaboration

EU-funded institutions

European Commission

> Kristian Joten Andersen **Ragnhild Aurlien** Ranajoy Banerji Maksym Brilenkov Hans Kristian Eriksen Johannes Røsok Eskilt Marie Kristine Foss Unni Fuskeland Eirik Gjerløw Mathew Galloway Daniel Herman Ata Karakci Håvard Tveit Ihle Metin San **Trygve Leithe Svalheim** Harald Thommesen **Duncan Watts** Ingunn Kathrine Wehus

Marco Bersanelli Loris Colombo **Cristian Franceschet Davide Maino** Aniello Mennella Simone Paradiso

Sara Bertocco Samuele Galeotta Gianmarco Maggio Michele Maris Daniele Tavagnacco Andrea Zacchei

Elina Keihänen Anna-Stiina Suur-Uski

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINK

Stelios Bollanos Stratos Gerakakis Maria leoronymaki Ilias Ioannou

External collaborators

Brandon Hensley

Jeff Jewell

Reijo Keskitalo

Bruce Partridge

Martin Reinecke

23

The BeyondPlanck pipeline in one slide

1. Write down an explicit parametric model for the observed data:

$$d_{j,t} = g_{j,t} \mathsf{P}_{tp,j} \left[\mathsf{B}_{pp',j}^{\text{symm}} \sum_{c} \mathsf{M}_{cj}(\beta_{p'}, \Delta_{\text{bp}}^{j}) a_{p'}^{c} + \mathsf{B}_{j,t}^{\text{asymm}} \left(\boldsymbol{s}_{j}^{\text{orb}} + \boldsymbol{s}_{t}^{\text{fsl}} \right) \right] + n_{j,t}^{\text{corr}} + n_{j,t}^{\text{w}}.$$

Let ω = {all free parameters}

European Commission

2. Derive the joint posterior distribution with Bayes' theorem:

$$P(\omega \mid \boldsymbol{d}) = \frac{P(\boldsymbol{d} \mid \omega)P(\omega)}{P(\boldsymbol{d})} \propto \mathcal{L}(\omega)P(\omega).$$

3. Map out $P(\omega \mid d)$ with standard Markov Chain Monte Carlo (MCMC) methods

The BeyondPlanck data model

The posterior distribution

How to sample from *big* distributions?

The BeyondPlanck Gibbs sampler

What we want to do:

European Commission

How we actually do it:

$$g \leftarrow P(g \mid d, \qquad \xi_n, \Delta_{bp}, a, \beta, C_{\ell})$$

$$n_{corr} \leftarrow P(n_{corr} \mid d, g, \qquad \xi_n, \Delta_{bp}, a, \beta, C_{\ell})$$

$$\xi_n \leftarrow P(\xi_n \mid d, g, n_{corr}, \Delta_{bp}, a, \beta, C_{\ell})$$

$$\Delta_{bp} \leftarrow P(\Delta_{bp} \mid d, g, n_{corr}, \xi_n, \qquad a, \beta, C_{\ell})$$

$$\beta \leftarrow P(\beta \mid d, g, n_{corr}, \xi_n, \Delta_{bp}, \qquad C_{\ell})$$

$$a \leftarrow P(a \mid d, g, n_{corr}, \xi_n, \Delta_{bp}, \qquad \beta, C_{\ell})$$

$$C_{\ell} \leftarrow P(C_{\ell} \mid d, g, n_{corr}, \xi_n, \Delta_{bp}, a, \beta \qquad)$$

BeyondPlanck papers

Reference	TITLE
Pipeline	
BeyondPlanck Collaboration (2020)	I. Global Bayesian analysis of the <i>Planck</i> Low Frequency Instrument data
Keihänen et al. (2020)	II. CMB mapmaking through Gibbs sampling
Galloway et al. (2020a)	III. Computational infrastructure and Commander3
Brilenkov et al. (2020)	IV. Time-ordered data simulations
Gerakakis et al. (2020)	V. Open Science and reproducibility
Instrument characterization	
Ihle et al. (2020)	VI. Noise characterization and modelling
Gjerløw et al. (2020)	VII. Calibration
Galloway et al. (2020b)	VIII. Sidelobe corrections
Svalheim et al. (2020a)	IX. Bandpass and beam leakage corrections
Cosmological and astrophysical results	
Suur-Uski et al. (2020)	X. LFI frequency map posteriors
Colombo et al. (2020)	XI. CMB constraints
Paradiso et al. (2020)	XII. Cosmological parameter estimation with end-to-end error propagation
Andersen et al. (2020)	XIII. Intensity foregrounds, degeneracies and priors
Svalheim et al. (2020b)	XIV. Polarized synchrotron emission
Herman et al. (2020)	XV. Limits on polarized anomalous microwave emission

Aurlien et al. (2020) XVI. Application to simulated LiteBIRD observations Watts et al. (2020) XVII. Application to WMAP Galeotta et al. (2020) XVIII. End-to-end validation of BEYONDPLANCK

- To highlight the method itself, only the following data are included in the current analysis:
 - Planck LFI 30, 44 and 70 GHz time-ordered data
 - Planck 857 GHz to constrain thermal dust intensity

- *Planck 353 GHz* polarization-only to constrain thermal dust polarization
- WMAP 33-61 GHz in T+P to constrain low-frequency foregrounds
- Haslam 408 MHz to constrain synchrotron intensity
- Intermediate *Planck HFI* and *WMAP 23 GHz* data are *not* included, because they have higher signal-to-noise ratios than Planck LFI

Main product: Ensemble of full sample sets

Instrument

European Commission

Gibbs iteration

31

Computational resource requirements

European Commission

Ітем	30 GHz	44 GHz	70 GHz	Sum		
Data volume						
Uncompressed data volume	. 761 GB	1633 GB	5522 GB	7 915 GB		
Compressed data volume/RAM requirements 86 GB 178 GB 597 GB						
Processing time (cost per run)						
TOD initialization/IO time	. 176 sec	288 sec	753 sec	1217 sec		
Other initialization				663 sec		
Total initializa				1880 sec		
Gibbs sampling si						
Data decompre 2 3 hours/sample						
TOD projection	210 modro/ campro					
Sidelobe evalu	on on					
Orbital dipole	lipole (
Gain sampling Gamalata Insi 72-core pode V	with 1 F			94 sec		
TOD binning (3138 sec		
Loss due to po				498 Sec		
Sum of other T				306 sec		
TOD processing				6396 sec		
Amplitude sampling $P(a \mid d \mid a)$						
Spectral index sampling $P(\beta \mid d, \omega \setminus \beta)$						
Other steps						
Total cost ner sample						
	•			0100 sec		

- Six independent Gibbs chains of each 200 samples were generated on 6 compute nodes
- Total wall production time for main run was **3 weeks**
- Total CPU cost for main run was 220,000 CPU hours
 - For comparison, simulating one single traditional Planck Full Focal Plane 70 GHz realization costs O(10⁴) CPU hours (Planck Collaboration 2016, A&A, 596, A12)

Galloway et al. (2020)

Frequency maps: 30 GHz Stokes Q

Suur-Uski et al. (2020)

European Commission

Beyond

Frequency maps: Posterior mean

Frequency maps: Difference between two samples

European Commission

Suur-Uski et al. (2020)

Frequency maps: 30 GHz minus NPIPE/Planck 2018

LFI DPC gain template (Planck Collaboration 2020, A&A, 641, A2 Q Q -10 μK 10 -10 μK 10 ΔA_{30}^{2018} ΔA_{30}^{2018} Т U ΔA_{30}^{2018} 0 Т U Q 0 -100 10 0 -4 $^{-4}$ d μK μK μK Suur-Uski et al. (2020) 36

Frequency maps: 30 GHz minus WMAP K-band

European Commission

Beyond

Frequency maps: Power spectrum

Frequency maps: Power spectrum

Flatter spectrum

Less correlated noise due to joint multi-frequency signal estimation

Higher white noise at 44 GHz because we discard more data

Suur-Uski et al. (2020)

Astrophysical foregrounds: Temperature sky

Astrophysical foregrounds: Polarized synchrotron emission

CMB: Solar dipole

		GALACTIC CO	OORDINATES	
Experiment	Amplitude $[\mu K_{CMB}]$	l [deg]	b [deg]	Reference
$COBE^{a,b}$ $WMAP^{c}$	$3358 \pm 23 \\ 3355 \pm 8$	264.31 ± 0.16 263.99 ± 0.14	$\begin{array}{r} 48.05 \pm 0.09 \\ 48.26 \pm 0.03 \end{array}$	Lineweaver et al. (1996) Hinshaw et al. (2009)
LFI 2015 ^b HFI 2015 ^d	3365.5 ± 3.0 3364.29 ± 1.1	264.01 ± 0.05 263.914 ± 0.013	$\begin{array}{r} 48.26 \pm 0.02 \\ 48.265 \pm 0.002 \end{array}$	Planck Collaboration II (2016) Planck Collaboration VIII (2016)
LFI 2018 ^b HFI 2018 ^d	3364.4 ± 3.1 3362.08 ± 0.99	263.998 ± 0.051 264.021 ± 0.011	$\begin{array}{c} 48.265 \pm 0.015 \\ 48.253 \pm 0.005 \end{array}$	Planck Collaboration II (2020) Planck Collaboration III (2020)
NPIPE ^{a,c}	3366.6 ± 2.6	263.986 ± 0.035	48.247 ± 0.023	Planck Collaboration (2020)
BEYONDPLANCK ^e	3359.5 ± 1.9	263.97 ± 0.09	48.30 ± 0.03	Section 9.5

Colombo et al. (2020)

CMB temperature sample

CMB: High-I TT spectrum

Paradiso et al. (2020)

	Beyond	PLANCK	Planck 2018		WMAP	
Parameter	$\ell \le 600$	+Planck $\ell > 600$	Estimate	$\Delta(\sigma)$	Estimate	$\Delta(\sigma)$
$\Omega_{\rm h}h^2$	0.02226 ± 0.00088	0.02230 ± 0.00022	0.02237 ± 0.00015	-0.1	0.02243 ± 0.00050	-0.2
$\Omega_c h^2$	0.115 ± 0.016	0.1227 ± 0.0025	0.1200 ± 0.0012	-0.3	0.1147 ± 0.0051	0
Ω _Λ	2222		2022		0.721 ± 0.025	
$100\theta_{MC}$	1.0402 ± 0.0048	1.04064 ± 0.00048	1.04092 ± 0.00031	-0.2	•••	
τ	0.067 ± 0.016	0.074 ± 0.015	0.054 ± 0.007	0.8	0.089 ± 0.0014	-1.4
$10^{9}\Delta_{\varphi}^{2}$					2.41 ± 0.10	
$\ln(10^{10}A_s)$	3.035 ± 0.079	3.087 ± 0.029	3.044 ± 0.014	-0.1		
<i>n</i> _s	0.962 ± 0.019	0.9632 ± 0.0060	0.9649 ± 0.0042	-0.1	0.972 ± 0.013	-0.5

- Statistically consistent with previous estimates
- Larger error bars since we only use LFI and WMAP data
 - Formally speaking, we also marginalize over a much richer instrument and foreground model, but this is negligible in temperature compared to cosmic variance

Low-resolution CMB map and covariance matrix

Compute low-resolution CMB map and covariance matrix directly from samples:

$$\hat{s}_{\text{CMB}} = \left\langle s_{\text{CMB}}^{i} \right\rangle$$
$$\mathsf{N} = \left\langle (s_{\text{CMB}}^{i} - \hat{s}_{\text{CMB}})(s_{\text{CMB}}^{i} - \hat{s}_{\text{CMB}})^{t} \right\rangle$$

This is the first time uncertainties from gain, bandpass and a fine-grained foreground model have been consistently propagated into CMB low-I likelihood inputs!

Low-resolution CMB map and covariance matrix

Compute low-resolution CMB map and covariance matrix directly from samples:

$$\hat{s}_{\text{CMB}} = \left\langle s_{\text{CMB}}^{i} \right\rangle$$
$$\mathsf{N} = \left\langle (s_{\text{CMB}}^{i} - \hat{s}_{\text{CMB}})(s_{\text{CMB}}^{i} - \hat{s}_{\text{CMB}})^{t} \right\rangle$$

This is the first time uncertainties from gain, bandpass and a fine-grained foreground model have been consistently propagated into CMB low-I likelihood inputs!

CMB: Low-I polarization likelihood, τ and r

 $P(C_{\ell} \mid \hat{\boldsymbol{s}}_{\text{CMB}}) \propto \frac{e^{-\frac{1}{2}\hat{\boldsymbol{s}}_{\text{CMB}}^{t}(\mathsf{S}(C_{\ell}) + \mathsf{N})^{-1}\hat{\boldsymbol{s}}_{\text{CMB}}}}{\sqrt{|\mathsf{S}(C_{\ell}) + \mathsf{N}|}}$

Paradiso et al. (2020)

CMB: Low-/ polarization likelihood, τ and r

 $P(C_{\ell} \mid \hat{\boldsymbol{s}}_{\text{CMB}}) \propto \frac{e^{-\frac{1}{2}\hat{\boldsymbol{s}}_{\text{CMB}}^{t}(\mathsf{S}(C_{\ell}) + \mathsf{N})^{-1}\hat{\boldsymbol{s}}_{\text{CMB}}}}{\sqrt{|\mathsf{S}(C_{\ell}) + \mathsf{N}|}}$

Paradiso et al. (2020)

Uncertainties on the optical depth of reionization

WN TOD + WN 40 FG + WN TOD + FG + WN 35 30 25 $P(\tau)$ 20 15 10 5 0 0.14 0.06 0.12 0.02 0.04 0.08 0.10 τ

Paradiso et al. (2020)

European Commission

Analysis Name	Data Sets	$f_{ m sky}^{ m pol}$	τ	$r^{BB}_{95\%}$	χ^2 PTE	Reference
BeyondPlanck, $\ell = 2-8$ BeyondPlanck, $\ell = 3-8$ BeyondPlanck, $\ell = 2-8$, full-sky	LFI, <i>WMAP Ka–V</i> LFI, <i>WMAP Ka–V</i> LFI, <i>WMAP Ka–V</i>	0.36 0.36 0.74	$\begin{array}{c} 0.060\substack{+0.015\\-0.013}\\ 0.061\substack{+0.015\\-0.014}\\ 0.091\substack{+0.010\\-0.098}\end{array}$	< 4.3 < 5.4 2.9 ^{+1.3} _{-1.0}	$0.16 \\ 0.16 \\ 5 \cdot 10^{-4}$	Paradiso et al. (2020) Paradiso et al. (2020) Paradiso et al. (2020)
WMAP 9-yrNatale et al.Planck 2018SROLL2NPIPE (Commander CMB)	<i>WMAP Ka–V</i> LFI 70, <i>WMAP Ka–V</i> HFI 100×143 HFI 100×143 LFI+HFI	0.76 0.54 0.50 0.50 0.50	$\begin{array}{c} 0.089 \pm 0.014 \\ 0.071 \pm 0.009 \\ 0.051 \pm 0.009 \\ 0.059 \pm 0.006 \\ 0.058 \pm 0.006 \end{array}$	< 0.41 < 0.16		Hinshaw et al. (2013) Natale et al. (2020) Planck Collaboration V (2020) Pagano et al. (2020) Tristram et al. (2020)

Paradiso et al. (2020)

Full-sky polarization mask has unacceptable χ^2 !

- Correlated noise map at 44 GHz shows strong stripes in Southern hemisphere
- Origin not yet understood, but being actively investigated
- Seems associated with poor gain model for some Planck scanning rings
 - Sub-optimal processing mask?
 - Undetected gain jumps?

1/f model at 70 GHz fits well

Correlated noise parameters for 70GHz 23M radiometer

Outstanding issues 2: 1/f model at 30 and 44 GHz

Correlated noise parameters for 44GHz 25M radiometer

Outstanding issues 2: 1/f model at 30 and 44 GHz

Correlated noise parameters for 44GHz 26S radiometer

Outstanding issues 2: 1/f model at 30 and 44 GHz

Ihle et al. (2020)

- Correlated noise is fitted using a standard 1/f model: $P(f) = \sigma_0^2 \left| 1 + \left(\frac{f}{f_{\text{knee}}} \right)^{\frac{1}{2}} \right|$
- Not a statistically sufficient model for 30 and 44 GHz channels

- Significant and time-variable excess between 0.1 and 5 Hz, corresponding to angular scales beween 1 and 60 degrees on the sky
 - Appears non-thermal in origin. Electrical issue? Investigation on-going

The future: Cosmoglobe

- BeyondPlanck has successfully implemented an efficient end-to-end analysis framework for global CMB analysis
 - \circ So far, only LFI has been fully integrated
- Now it needs to be populated with complementary datasets:
 - Public: Planck HFI, WMAP, FIRAS, DIRBE...
 - Proprietary: BICEPx, C-BASS, CLASS, COMAP, PASIPHAE, QUIJOTE, QUIET, S-PASS, SPIDER...?
- Obviously a community effort, and will rely on active participation from interested experiments
- This effort will be organized by the Cosmoglobe project; see talk by Ingunn Wehus on Friday

Commander3, Open Source and reproducibility

Gerakakis et al. (2020) Galloway et al. (2020)

- The main BeyondPlanck computer code is called Commander3
 - Direct generalization of Commander2, as used in the Planck 2018 analysis
- Commander3 is publicly released under a GPL3 license:

https://github.com/Cosmoglobe/Commander

 BeyondPlanck products, software and documentation are available through the project home page:

https://beyondplanck.science

- Caveats:
 - All software is provided as is, with no guarantees of any kind
 - This is a software platform for cutting-edge research, and therefore by nature a continuous work-in-progress
 - Support is provided on a strictly voluntary basis; there is no "help desk"
 - If you want hands-on assistance, proposing a joint research project with one or more experienced BeyondPlanck/Cosmoglobe team members is a good idea

The BeyondPlanck release conference

Schedule

Full program of the BeyondPlanck Release Conference. All times are expressed in CET (UTC+1).

	Day 1 - Wednesday, 18 Nov		Day 2 - Thursday, 19 Nov
14:45	Zoom connection opens	14:45	Zoom connection opens
15:00	BeyondPlanck: Motivation and main results (Hans Kristian Eriksen)	15:00	Noise estimation (Håvard Tveit Ihle)
16:00	Planck overview (Charles Lawrence)	15:30	Calibration (Eirik Gjerløw)
	Break	15:55	Sidelobes (Mathew Galloway)
17:30	The Planck LFI instrument (Marco Bersanelli)	16:10	Leakage corrections (Trygve Leithe Svalheim)
18:05	Planck LFI DPC processing and final status (Samuele Galeotta)		Break
18:40	NPIPE (Reijo Keskitalo)	17:00	Commander and computational aspects (Mathew Galloway)
19:10	CMB mapmaking by Gibbs sampling (Elina Keihänen)	17:20	BeyondPlanck frequency maps (Anna-Stiina Suur-Uski)
		17:55	CMB constraints (Loris Colombo)
		18:25	Cosmological parameters (Simone Paradiso)

Day 3 - Friday, 20 Nov				
14:45	Zoom connection opens			
15:00	LiteBIRD (Masashi Hazumi, TBC)			
15:30	Intensity foregrounds (Kristian Joten Andersen)			
16:00	Polarization foregrounds (Trygve Leithe Svalheim)			
16:25	Limits on polarized AME (Daniel Herman)			
	Break			
17:15	Preliminary analysis of external data sets (Duncan Watts)			
17:30	BeyondPlanck and LiteBIRD (Ragnhild Aurlien)			
18:00	Cosmoglobe (Ingunn Kathrine Wehus)			
18:20	Planck products and PLA (Marcos López-Caniego)			
18:40	Summary and questions (Bruce Partridge)			

Tutorial

Schedule

Time	Monday, 23 Nov	Tuesday, 24 Nov
15:00	Introduction	c3pp and postprocessing
15:30	The BP data model	BeyondPlanck products
16:00	Jupyter I	Jupyter III
16:30	Jupyter II	Jupyter IV
17:00	Break	Break
17:30	Installing Commander	Adding external sky maps
18:00	The Commander parameter file	Adding external time-ordered data
18:30	Running Commander	Cosmoglobe
19:00	Q&A	Q&A

BeyondPlanck project

Main webpage: Products:

Papers: **Discussion** forum:

Commander

European Commission

> Source code : Documentation:

https://beyondplanck.science https://products.beyondplanck.science https://pla.esac.esa.int (subset; when papers are accepted) https://beyondplanck.science/products/publications https://forums.beyondplanck.science

https://github.com/cosmoglobe/Commander https://docs.beyondplanck.science

Cosmoglobe

Main webpage:

http://cosmoglobe.uio.no

Planck Legacy Archive (selected BeyondPlanck products coming soon) Link:

https://pla.esac.esa.int

Summary

- BeyondPlanck has successfully implemented a framework for global end-to-end Bayesian CMB analysis, and demonstrated this using Planck LFI
- Important advantages of this framework include:
 - Joint instrument and foreground modelling
 - End-to-end error propagation
 - Physically motivated models
 - Multi-experiment analysis

- Multi-level goodness-of-fit tests
- No intermediate human interaction
- High computational efficiency

- \Rightarrow more robust results
- \Rightarrow reliable uncertainties
- \Rightarrow intuitive interpretation
- \Rightarrow naturally breaking degeneracies
- \Rightarrow detailed systematics monitoring
- \Rightarrow less room for mistakes
- \Rightarrow can run on inexpensive computers
- Next steps are to generalize and populate this framework with many more datasets, both public and proprietary
 - All interested parties are invited to join Cosmoglobe, working together toward a global model of the Universe in an Open Science-based community!

The BeyondPlanck collaboration

EU-funded institutions

European Commission

> Kristian Joten Andersen **Ragnhild Aurlien** Ranajoy Banerji Maksym Brilenkov Hans Kristian Eriksen Johannes Røsok Eskilt Marie Kristine Foss Unni Fuskeland Eirik Gjerløw Mathew Galloway Daniel Herman Ata Karakci Håvard Tveit Ihle Metin San **Trygve Leithe Svalheim** Harald Thommesen **Duncan Watts** Ingunn Kathrine Wehus

Marco Bersanelli Loris Colombo **Cristian Franceschet Davide Maino** Aniello Mennella Simone Paradiso

Sara Bertocco Samuele Galeotta Gianmarco Maggio Michele Maris Daniele Tavagnacco Andrea Zacchei

Elina Keihänen Anna-Stiina Suur-Uski

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINK

Stelios Bollanos Stratos Gerakakis Maria leoronymaki Ilias Ioannou

External collaborators

Brandon Hensley

Jeff Jewell

Reijo Keskitalo

Bruce Partridge

Martin Reinecke

The BeyondPlanck collaboration

EU-funded institutions

AND C C C L

European Commission

> Kristian Joten Andersen **Ragnhild Aurlien Ranajoy Banerji Maksym Brilenkov** Hans Kristian Eriksen Johannes Røsok Eskilt Marie Kristine Foss Unni Fuskeland **Eirik Gjerløw Mathew Galloway Daniel Herman** Ata Karakci Håvard Tveit Ihle Metin San **Trygve Leithe Svalheim** Harald Thommesen **Duncan Watts** Ingunn Kathrine Wehus

Sara Bertocco Samuele Galeotta Gianmarco Maggio Michele Maris Daniele Tavagnacco Andrea Zacchei

Elina Keihänen Anna-Stiina Suur-Uski

HELSINGIN YLIOPISTO

UNIVERSITY OF HELSINK

Stelios Bollanos Stratos Gerakakis Maria leoronymaki Ilias Ioannou 10 postdocs 10 PhD students

Marco Bersanelli Loris Colombo Cristian Franceschet Davide Maino Aniello Mennella Simone Paradiso

64

Funding

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 776282

"BeyondPlanck"

Ο

- COMPET-4 program
 - PI: Hans Kristian Eriksen
- Grant no.: 776282
- Period: Mar 2018 to Nov 2020

Collaborating projects:

- "bits2cosmology"
 - ERC Consolidator Grant
 - PI: Hans Kristian Eriksen
 - Grant no: 772 253
 - Period: April 2018 to March 2023

- "Cosmoglobe"
 - ERC Consolidator Grant
 - PI: Ingunn Wehus
 - Grant no: 819 478
 - \circ $\$ Period: $\$ June 2019 to May 2024

Questions?

European Commission

Beyond Commander

ASITAS OSIOPENSIS AND CCCX

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

JPL

Cosmoglobe Beyond

