

Intensity foregrounds and priors

Beyond PLANCK

Kristian Joten Andersen

BeyondPlanck online release conference, November 18-20, 2020

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 776282

The BeyondPlanck Gibbs sampler

The BeyondPlanck data model

European Commission

$$d_{j,t} = g_{j,t} \mathsf{P}_{tp,j} \left[\mathsf{B}_{pp',j}^{\text{symm}} \sum_{c} \mathsf{M}_{cj}(\beta_{p'}, \Delta_{\mathsf{bp}}^{j}) a_{p'}^{c} + \mathsf{B}_{j,t}^{\text{asymm}} \left(\boldsymbol{s}_{j}^{\text{orb}} + \boldsymbol{s}_{t}^{\text{fsl}} \right) \right] + n_{j,t}^{\text{corr}} + n_{j,t}^{\text{w}}.$$

$$g \leftarrow P(g \mid d, \qquad \xi_n, \Delta_{bp}, a, \beta, C_{\ell})$$

$$n_{corr} \leftarrow P(n_{corr} \mid d, g, \qquad \xi_n, \Delta_{bp}, a, \beta, C_{\ell})$$

$$\xi_n \leftarrow P(\xi_n \mid d, g, n_{corr}, \Delta_{bp}, a, \beta, C_{\ell})$$

$$\Delta_{bp} \leftarrow P(\Delta_{bp} \mid d, g, n_{corr}, \xi_n, \qquad a, \beta, C_{\ell})$$

$$\beta \leftarrow P(\beta \mid d, g, n_{corr}, \xi_n, \Delta_{bp}, \qquad C_{\ell})$$

$$a \leftarrow P(a \mid d, g, n_{corr}, \xi_n, \Delta_{bp}, \qquad \beta, C_{\ell})$$

$$C_{\ell} \leftarrow P(C_{\ell} \mid d, g, n_{corr}, \xi_n, \Delta_{bp}, a, \beta)$$

$P(\mathbf{a}, \beta \,|\, \mathbf{d}, \mathbf{g}, \ldots) = P(\mathbf{a}, \beta \,|\, \mathbf{d})$

for simpler notation

Bayes' theorem:

European Commission

Gibbs sampling:

$$\beta \leftarrow P(\beta \,|\, \mathbf{d}, \mathbf{a}, \dots) \propto \mathcal{L}(\beta \,|\, \mathbf{a}) P(\beta \,|\, \mathbf{a})$$
$$\mathbf{a} \leftarrow P(\mathbf{a} \,|\, \mathbf{d}, \beta, \dots) \propto \mathcal{L}(\mathbf{a} \,|\, \beta) P(\mathbf{a} \,|\, \beta)$$

European

 $P(\mathbf{a}, \beta \,|\, \mathbf{d}) = \frac{P(\mathbf{d} \,|\, \mathbf{a}, \beta) P(\mathbf{a}, \beta)}{P(\mathbf{d})} \propto \mathcal{L}(\mathbf{a}, \beta) P(\mathbf{a}, \beta)$ Likelihood function $\beta \leftarrow \mathcal{L}(\beta)$ $\mathcal{L}(\mathbf{a},\beta) = \mathcal{L}(\mathbf{a} \mid \beta) \mathcal{L}(\beta)$ $\mathbf{a} \leftarrow \mathcal{L}(\mathbf{a} \mid \beta)$ Joint Conditional Marginal

European Commission

European

Conditional vs. marginal likelihood function

$$\mathcal{L}(\boldsymbol{a},\boldsymbol{\beta}) \propto \frac{e^{-\frac{1}{2}(\boldsymbol{m}_{\nu}-\boldsymbol{A}_{\nu}\boldsymbol{a})^{T} \, \boldsymbol{\mathsf{N}}_{\nu}^{-1} \, (\boldsymbol{m}_{\nu}-\boldsymbol{A}_{\nu}\boldsymbol{a})}}{\sqrt{|2\pi \mathbf{N}_{\nu}^{-1}|}}$$

assuming gaussian white noise

$$-2\ln \mathcal{L}(\boldsymbol{a},\boldsymbol{\beta}) = \operatorname{const} + (\boldsymbol{m}_{\nu} - \boldsymbol{A}_{\nu}\boldsymbol{a})^T \boldsymbol{N}_{\nu}^{-1} (\boldsymbol{m}_{\nu} - \boldsymbol{A}_{\nu}\boldsymbol{a}) = \operatorname{const} + \chi^2$$

Assume for computational efficiency:

- β varies more slowly than **a**
- uniform pixelization and angular resolution for all *m*,
- N₁ is diagonal

European Commission

Stompor et al. (2009, MNRAS, 392, 216) shows that per pixel (across all frequencies) the log-likelihood becomes

$$-2 \ln \mathcal{L}_{ridge}(\beta) = const + (A^T N^{-1} m)^T (A^T N^{-1} A)^{-1} (A^T N^{-1} m),$$

$$-2 \ln \mathcal{L}_{marg}(\beta) = -2 \ln \int da \exp \left[-\frac{1}{2}(m - Aa)^T N^{-1} (m - Aa)\right]$$

$$= const + (A^T N^{-1} m)^T (A^T N^{-1} A)^{-1} (A^T N^{-1} m)$$

$$+ \ln \left[(A^T N^{-1} A)^{-1}\right],$$

Commission

Data model and priors

10

Beyond PLANCK

Data model and external data

European Commission

Free parameters

CMB

Synchrotron

Free-free

AME / Spinning dust

Thermal dust

Point sources

Not: Sunyaev-Zeldovich effect, zodiacal light, cosmic infrared background

Data model and external data

European Commission

Free parameters

- Only the following data are included in the component separation analysis:
 - Planck LFI 30, 44 and 70 GHz pixel maps, binned from time-ordered data (Suur-Uski et al.2020)
 - Planck 857 GHz to constrain thermal dust intensity
 - WMAP 33-61 GHz to constrain low-frequency foregrounds
 - *Haslam 408 MHz* to constrain synchrotron intensity
- Intermediate *Planck HFI* and *WMAP 23* GHz data are *not* included, because they have similar or higher signal-to-noise ratios than *Planck* LFI, which we want to be the *dominant* statistical driver.

60' FWHM, $20^{\circ} \times 20^{\circ}$ centered on galactic south pole

European Commission

60' FWHM, $20^{\circ} \times 20^{\circ}$ centered on galactic south pole

European Commission

European Commission

15' FWHM, $20^{\circ} \times 20^{\circ}$ centered on galactic south pole

16

1.5 $\beta = -1$ 0 = = 1 Average normalized $ar{\chi}^2$ Default prior 1.0 0.5 0.0 -0.5 10^{2} 10^{3} 10^{4} 10^{5} AME prior amplitude, q1.5 $\beta = 1$ $\beta = 3$ Average normalized $ar{\chi}^2$ Default prior 1.00.5 0.0 د. 10² - 10² 10^{3} 10^{4} 10^{5} Free-free prior amplitude, q

European Commission

Implement an amplitude prior with mean maps based on:

- Planck 2015 free-free map,
- scaled Planck 857 GHz,

The prior RMS is specified as $\hat{D}(\ell) = q \left(\frac{\ell}{\ell_0}\right)^{\beta}$

 $q \sim \text{prior amplitude}$ $\beta \sim \text{tilt parameter}$ $\ell_0 \sim \text{pivot multipole} = 50$

$$\bar{\chi}^2 = \frac{\chi^2 - \nu}{\sqrt{2\nu}}; \quad \nu = 15400$$

European Commission

15' FWHM, $20^{\circ} \times 20^{\circ}$ centered on galactic south pole

100

100

Spectral parameter degeneracies and priors

European Commission

Well constrained by data.

Sample from data, with Gaussian prior *N*(-3.1, 0.1²). (*Planck* 2016, A&A, 594, A10) Well constrained by data.

Sample from data, with Gaussian prior $N(28, 3^2)$ [GHz].

Prefers higher values, diverges to > 2.0 when sampled with other parameters

We only sample from Gaussian prior $N(1.56, 0.03^2)$. (*Planck* 2016, A&A, 594, A10)

Spectral parameter degeneracies and priors

$$\alpha_{\rm src} = N(-0.1, 0.3^2)$$

Bennet et al. 2013, ApJS, 208, 20

 $T_{\rm e} = 7000 \,\mathrm{K}$

European Commission

 $T_{\rm dust} = T_{\rm dust, HFI}$

Planck 2016, A&A, 594, A10

Planck Collaboration Int. LVII. 2020, A&A, in press [arXiv:2007.04997] Most recent *Planck* HFI

20

European Commission **Beyond PLANCK**

Spectral parameters posteriors

European Commission

Low frequency amplitudes

At 22 GHz

At 40 GHz

Low frequency amplitude difference with Planck 2015

Goodness-of-fit: Residuals

Thermal dust emission

Compact sources

European Commission

Standard deviation

Mean

26

 $20^{\circ} \times 20^{\circ}$ centered on $(l, b) = (90^{\circ}, 70^{\circ})$

Beyond

Outlook

Haslam 0.408

European Commission

0.408 GHz

Outlook

European Commission

The Cosmoglobe project

Summary

- Marginal likelihood
- Amplitude priors

European Commission

- Spectral parameter priors
- ⇒ faster sampling of correlated posteriors
- \Rightarrow reduce degeneracies; AME, free-free, CMB
- ⇒ constrain weakly determined parameters while still propagating uncertainties

- Degeneracies between AME, free-free, and synchrotron amplitudes
- More datasets needed to break degeneracies.
- Long burn-in for AME and synchrotron, optimize pivot frequencies?

 Next step: Populate with many more datasets (Planck HFI, S-PASS, C-BASS, CHI-PASS, DIRBE) to break degeneracies and constrain the full model. This is the main goal of Cosmoglobe!

Funding

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 776282

"BeyondPlanck"

Ο

- COMPET-4 program
 - PI: Hans Kristian Eriksen
- Grant no.: 776282
- Period: Mar 2018 to Nov 2020

Collaborating projects:

European Commission

- "bits2cosmology"
 - ERC Consolidator Grant
 - PI: Hans Kristian Eriksen
 - Grant no: 772 253
 - Period: April 2018 to March 2023

- "Cosmoglobe"
 - ERC Consolidator Grant
 - PI: Ingunn Wehus
 - Grant no: 819 478
 - \circ $\$ Period: $\$ June 2019 to May 2024

Questions?

European Commission

Beyond PLANCK

Commander

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

31

Cosmoglobe Beyond