

Noise characterization and modelling

Beyond PLANCK

Håvard Tveit Ihle

BeyondPlanck online release conference, November 18-20, 2020

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 776282

The BeyondPlanck Gibbs sampler

Correlated noise, n^{corr}

What we want to do:

European Commission

How we actually do it:

Noise parameters, $\xi_n = \{\sigma_{0,f_{\text{knee}}}, \alpha\}$

BEYOND PLANCK VI. Noise characterization and modelling

H. T. Ihle^{11*}, M. Bersanelli^{4,9,10}, C. Franceschet^{4,10}, E. Gjerløw¹¹, K. J. Andersen¹¹, R. Aurlien¹¹, R. Banerji¹¹, S. Bertocco⁸, M. Brilenkov¹¹, M. Carbone¹⁴, L. P. L. Colombo⁴, H. K. Eriksen¹¹, M. K. Foss¹¹, U. Fuskeland¹¹, S. Galeotta⁸, M. Galloway¹¹, S. Gerakakis¹⁴, B. Hensley², D. Herman¹¹, M. Iacobellis¹⁴, M. Ieronymaki¹⁴, J. B. Jewell¹², A. Karakci¹¹, E. Keihänen^{3,7}, R. Keskitalo¹, G. Maggio⁸, D. Maino^{4,9,10}, M. Maris⁸, A. Mennella^{4,9,10}, S. Paradiso^{4,9}, B. Partridge⁶, M. Reinecke¹³, A.-S. Suur-Uski^{3,7}, T. L. Svalheim¹¹, D. Tavagnacco^{8,5}, H. Thommesen¹¹, D. J. Watts¹¹, I. K. Wehus¹¹, and A. Zacchei⁸

arXiv:2011.06650 Beyond

Data model

$$d_t = gs_t^{\text{tot}} + n_t^{\text{corr}} + n_t^{\text{wn}}$$

Signal subtracted data:

European Commission

$$d'_t \equiv d_t - gs_t^{\text{tot}} = n_t^{\text{corr}} + n_t^{\text{wn}}$$

Covariance matrices:

$$\langle n_{t'}^{w}(n_{t}^{w})^{T} \rangle = \mathsf{N}^{wn}_{tt'} = \sigma_{0}^{2}$$

$$\langle n_{t'}^{\text{corr}}(n_{t}^{\text{corr}})^{T} \rangle = \mathsf{N}^{\text{corr}}_{tt'} \stackrel{\text{Fourier}}{\Rightarrow} \sigma_{0}^{2} \left(\frac{f}{f_{\text{knee}}}\right)^{\alpha}$$

European Commission

Sampling the correlated noise $\underbrace{(N_{wn}^{-1} + N_{corr}^{-1})}_{wn} \underbrace{n^{corr}}_{wn} = \underbrace{N_{wn}^{-1}d' + N_{wn}^{-1/2}w_1 + N_{corr}^{-1/2}w_2}_{wn}$

Solve by iterative conjugate gradient (CG) method:

X

Costly, but doable, in terms of CPU-time! (See Keihänen et. al. (2020) for details)

Noise power spectrum sampling

Need to sample noise PSD parameters ($\xi_n = \{\sigma_{0, f_{\text{knee}}}, \alpha\}$)

(Sampled independently for each ~ 1 hour pointing period (PID))

European Commission

We use the following trick to fix σ_0 (so σ_0 is not sampled!)

$$\sigma_0^2 \equiv \frac{\operatorname{Var}(r_i - r_{i-1})}{2}$$
, $r_i \equiv d' - n^{\operatorname{corr}}$

For the correlated noise parameters we sample from the likelihood

$$P(\xi^n \setminus \sigma_0 | n^{\text{corr}}) \propto \frac{1}{\sqrt{|\mathsf{N}_{\text{corr}}|}} \exp\left(-\frac{1}{2}(n^{\text{corr}})^T \mathsf{N}_{\text{corr}}^{-1} n^{\text{corr}}\right)$$

where

$$\mathsf{N}_{\mathrm{corr}}(\xi^n) = \langle n^{\mathrm{corr}}(n^{\mathrm{corr}})^T \rangle \stackrel{\mathrm{Fourier}}{\Rightarrow} \sigma_0^2 \left(\frac{f}{f_{\mathrm{knee}}}\right)^{\alpha}$$

Bevond

Priors on $f_{\rm knee}$ and α

Use values for f_{knee} and α derived in the main Planck LFI DPC analysis (Planck Collaboration II. 2020)

$$-2\ln P(\alpha) = \left(\frac{\alpha - \alpha^{\text{DPC}}}{\sigma_{\alpha}}\right)^{2},$$

$$-2\ln P(f_{\text{knee}}) = \left(\frac{\log_{10} f_{\text{knee}} - \log_{10} f_{\text{knee}}^{\text{DPC}}}{\sigma_{f_{\text{knee}}}}\right)^{2} + 2\ln f_{\text{knee}},$$

 $\sigma_{\alpha}=0.2, \ \sigma_{f_{\rm knee}}=0.1.$

Example of full noise model

Correlated noise maps (one Gibbs sample)

30 GHz

European Commission

70 GHz

European Commission

Inter-radiometer correlations of noise parameters

Beyond PLANCK

Temperature sensors on the Planck Instrument

European

Commission

Inter-radiometer correlation of the correlated noise?

European Commission

Beyond

European Commission

Inter-radiometer correlation of the correlated noise

Inter-radiometer correlation of the correlated noise

Limits of the 1/f model?

Summary

Commission

- Gap filling using CG is costly, but works great for correlated noise sampling
- Noise properties change significantly over time as the LFI thermal environment changes
- At times large correlations between the noise of the different radiometers (mostly on long timescales)
- Residual issues for 30 and 44 GHz. Breakdown of 1/f - model?

Funding

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 776282

- *"BeyondPlanck"*
 - COMPET-4 program
 - PI: Hans
 Kristian Eriksen
 - Grant no.: 776282
 - Period:
 2020
- Mar 2018 to Nov

Collaborating projects:

Ο

- "bits2cosmology"
 - ERC Consolidator Grant
 - PI: Hans Kristian Eriksen
 - Grant no: 772 253
 - Period: April 2018 to March 2023

- "Cosmoglobe"
 - ERC Consolidator Grant
 - **PI**:

- Ingunn Wehus
- o Grant no: 819 478
- \circ Period: June 2019 to May 2024

Questions?

European Commission

Beyond PLANCK

Commander

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Cosmoglobe Beyond

