

The Planck Low Frequency Instrument

Marco Bersanelli

BeyondPlanck online release conference, November 18-20, 2020

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 776282

The Planck Collaboration

Planck Core Team

PLANCK COLLABORATION: P. A. R. Ade, N. Aghanim, B. Aja, E. Alippi, L. Aloy, P. Armand, M. Arnaud, A. Arneole, A. Arreola-Villanueva, E. Artal, E. Artina, A. Arts, M. Ashdown, J. Aumont, M. Azzaro, A. Bacchetta, C. Baccigalupi, M. Baker, M. Balaini, A. J. Banday, G. Barbier, R. B. Barteirro, M. Bartelmann, P. Battaglia, E. Bittaner, K. Benabet, J.-L. Beney, R. Beneyton, K. Bennett, A. Benott, J.-P. Perrard, P. Bhandari, P. Cardus, S. C. Mirola, S. Caminade, P. Cartus, S. C. M. Cantaluyo, B. G. Carry, A. C. Cantalano, D. Gayon, M. Guzya, D. Brenz, D. Brenz, D. Direnz, D. Cieron, B. Collaudin, J.-M. Colley, S. Colombi, J. Colombi, J. Colombi, S. Colouby, O. Corre, F. Couchot, B. Cougan, A. Coulais, P. Couzin, B. Crane, B. Crill, M. Crook, D. Crumb, F. Cuttaia, O. Casaro, H. Chaingeau, A. Chailburo, B. Collaudin, J.-M. Colley, S. Du, D. Duersin, J. Doursi, J. Douyes, J. Douyes, D. Douyes, J. Douyes, D. Conglina, G. Garonaro, C. Farne, R. Cill, M. Grook, D. Crames, R. Carra, F. Garola, G. Garotano, C. Garon, M. Granki, G. Garolamo, C. Danessi, D. Evoltani, J. G. Garolamo, C. Garone, R. Carvila, M. Garani, G. Garolamo, C. Garone, R. Carvila, M. Garani, S. H. Carvila, M. Garani, G. Garolamo, C. Garone, R. Carvila, M. Garani, G. Garolamo, C. Barbier, R. Hasel, J. Hasinski, F. Kase, P. Estaria, M. C. Falvella, F. Ferrari, F. Finelli, J. Fishman, S. Sogliani, S. Foley, A. Fonseca, G. Gorma, O. Forni, P. Fourino, M. Grin, A. Carrypueva, L. Gugliebin, D. Guichone, R. Coulaudi, J.-Hasinski, T. Cardis, S. Galetta, J. Galegos, K. Garaga, J. Garcis, M. Garola, G. Garcis, T. Garcis, S. Beretrin, J. Herroros, V. Hervier, A. Hasel, M. Herlen, Y. Heckler, Y. Heckler,

European Commission

The Low Frequency Instrument

European Commission

Low frequency side (30, 44, 70 GHz) of Planck observations

- Based on InP HEMT low noise amplifiers cooled to 20K
- Differential pseudo-correlation receiver, comparing sky signal with internal BB reference load at 4K
- System naturally sensitive to polarization

	CENTER FREQUENCY [GHz]							
INSTRUMENT CHARACTERISTIC	30	44	70					
nP HEMT Detector technology	M	MMIC						
Detector temperature		$20\mathrm{K}$						
Cooling system	H_2 Sorption Cooler							
Number of feeds	2	3	6					
Angular resolution [arcminutes FWHM]	33	24	14					
Effective bandwidth [GHz]	6	8.8	14					
Sensitivity [mK Hz ^{-1/2}]	0.17	0.20	0.27					
System temperature [K]	7.5	12	21.5					
Noise per 30' reference pixel $[\mu K]$	6	6	6					
$\Delta T/T$ Intensity ^b [10 ⁻⁶ μ K/K]	2.0	2.7	4.7					
$\Delta T/T$) Polarisation (Q and U) ^b [μ K/K]	2.8	3.9	6.7					
Maximum systematic error per pixel $[\mu K] \dots \dots$	< 3	< 3	< 3					

LFI PERFORMANCE GOALS^a

Planck BlueBook pre-launch (2005)

The Low Frequency Instrument

European Commission

High polarization purity

OMT: Isolation < -35 dB

-10

VTT – Finland – LFI 70GHz

European Commission

Endoscope picture Ref. horn – 4K load 1.5-mm thermal gap (44GHz)

LFI 4K reference loads

HFI 4K box

LFI pseudo-correlation receiver concept

European Commission

- In each radiometer leg, booth sky and reference signals undergo the same 1/f fluctuations (f_k reduced by factor 10⁴)
- Phase switch (4kHz) further suppresses fluctuations (e.g. from Back end)

LFI pseudo-correlation receiver concept

Diode difference

European Commission

Gain modulation factor (applied in s/w)

- *r-factor optimized to null radiometer output*
- Further reduction in 1/f knee frequency

Commission

Radiometer difference

- Further stabilization is obtained by differencing the two diode of each radiometer
 - Phase switch non-idealities are removed to first order
 - Improvement in knee frequency demonstrated in EBB tests

Planck scanning strategy: 40-60 spins are fully overlapping Redundancy and crossing in polar regions

LFI pseudo-correlation receiver concept

European Commission

LFI as a polarimeter

- Projected angles in the sky optimized to extract Q and U Stokes parameters
- Require differencing between M and S in horncoupled and combination of paired horns
- Paired radiometers downstream the OMT are RF-independent

 $g_{\rm M}, \Delta V_{\rm eff, M}$

Gain calibration and bandpasses need to be accurately

 $g_{\rm S}, \Delta v_{\rm eff, S}$

 Calibration or bandpass errors at ~few 0.01% level introduce significant T to P leakage for EE polarization

**** **** European

Commission

LFI noise spectrum

LFI pre-launch test data

LFI sensitivity

European Commission

Noise *measured in-flight*, full mission (CMB channels)

	30GHz	44GHz	70GHz	100GHz	143GHz	217GHz	353GHz
Angular resolution [arcmin]	33.2	28.1	13.1	9.7	7.3	5.0	4.9
Noise sensitivity $[\mu K_{CMB} s^{1/2}]$	148.5	173.2	151.9	41.3	17.4	23.8	78.8
NOISE/PIXEL							
From detector sensitivity [μK_{CMB}]	9.2	12.7	23.9	9.6	5.4	10.7	36.5
Measured from maps [μK_{CMB}]	9.2	12.5	23.2	11.2	6.6	12.0	43.2
Extended mission [months]	48	48	48	29	29	29	29
End-of-missioni [µK _{CMB}]	5.2	7.1	13.2	8.2	4.8	8.8	31.6
Measured End-of-Mission [$\Delta T/T$, $\mu K/K$]	1.9	2.6	4.8	3.0	1.8	3.2	11.6
2005: Blue book GOAL [ΔT/T, μK/K]	2.0	2.7	4.7	2.5	2.2	4.8	14.7
1996: Red book GOAL [Δ T/T, μ K/K]	~ 2						

At end of mission Planck fulfills completely the sensitivity goals proposed in the design phase many years in advance

But this is not enough!

Instrument development Ground & in-flight calibration

Lesson learned: Do not underestimate ground calibration!

Calibration target

LFI radiometer cryo testing (Thales/Laben, Milano 2006)

Eeehorn, OMT

Waveguide

Back-end module LFLunteerated instrument cryo testing Theestaben, Manon 2006)

Back-end uni

8 10

E CAR

TROP

1

Front-end unit

A 10973

American

Tilling .

Blackbody « sky target »

Satellite-level cryo testing (CSL, Liege 2007)

GS

shroud

CSL cryo facility

Planck FM

Main challenge: systematic effetcs

European Commission

LFI systematics summary – Temperature

Weighted average of each effect over the 30, 44 and 70GHz channels

• Systematics well under control for TT

Mennella et al 2011 A&A 536, A3

2014, A&A 571, A2+A3

LFI systematic effects

LFI systematics summary – EE polarization

Independent analysis for the 30, 44 and 70GHz channels

70 GHz

European Commission

44 GHz

30 GHz

Planck Collaboration, 2020, A&A, 641, A2 2016, A&A, 594, A2+A3 2014, A&A 571, A2+A3 Mennella et al 2011 A&A 536, A3

- As expected, DPC analysis showed significant contamination at 44GHz (and 30GHz) for large scale polarization
- 44GHz channel not used for cosmological analysis

Limiting factors of LFI Characterization Bandpass measurements

- Coupling foregrond emission with instrument systematics
- Intensity to Polarization leakage

European Commission

→ BEYOND PLANCK

European Commission

Limiting factors of LFI characterization

Assumption of stationary noise

3-parameter noise model: $P(f) = \sigma_0^2 \left[1 + \left(\frac{f}{f_{\text{knee}}} \right)^{\alpha} \right]$

	KNEE FREQUEN	сү <i>f</i> _{knee} [mHz]	Slope β		
	Radiometer M	Radiometer S	Radiometer M	Radiometer S	
70 GHz					
LFI-18	14.8 ± 2.5	17.8 ± 1.5	-1.06 ± 0.10	-1.18 ± 0.13	
LFI-19	11.7 ± 1.2	13.7 ± 1.3	-1.21 ± 0.26	-1.11 ± 0.14	
LFI-20	8.0 ± 1.9	5.7 ± 1.5	-1.20 ± 0.36	-1.30 ± 0.41	
LFI-21	37.9 ± 5.2	13.3 ± 1.5	-1.25 ± 0.09	-1.21 ± 0.09	
LFI-22	9.7 ± 2.3	14.8 ± 6.7	-1.42 ± 0.23	-1.24 ± 0.30	
LFI-23	29.7 ± 1.1	59.0 ± 1.4	-1.07 ± 0.03	-1.21 ± 0.02	
44 GHz					
LFI-24	26.8 ± 1.3	88.3 ± 8.9	-0.94 ± 0.01	-0.91 ± 0.01	
LFI-25	20.1 ± 0.7	46.4 ± 1.8	-0.85 ± 0.01	-0.90 ± 0.01	
LFI-26	64.4 ± 1.9	68.2 ± 9.5	-0.92 ± 0.01	-0.76 ± 0.07	
30 GHz					
LFI-27	174.5 ± 2.9	108.8 ± 2.5	-0.93 ± 0.01	-0.91 ± 0.01	
LFI-28	130.1 ± 4.4	43.1 ± 2.4	-0.93 ± 0.01	-0.90 ± 0.02	

Planck 2015, A03

Planck in-flight thermal stability

Full LFI mission (8 sureys) S1 S2 **S**3 S4 S5 S6 **S**7 **S**8 70 GHz 4 K load temp. [K] 4.7 30/44 GHz 9 Focal plane temp. [K] S/C switchover 5 20.5 B 5 Back-end temp. [°C] 00 σ 80 Transponde HFI dilution cooler always or switched off 400 200 600 800 1000 1200 1400 Days after launch

European Commission

L2 is an extremely stable environment

Thermal changes related to operations during mission lifetime Moderate impact on LFI noise properties

PLANCK

Limiting factors of LFI characterization

Limiting factors of LFI characterization

Assumption of stationary noise

Planck 2018 release A&A, A02 (2020)

• Noise model assumed average values of $\sigma_{\!_0}, f_{\!_{
m knee}}, lpha$

European Commission

 Variations of noise properties were observed, but not studied in detail in previous analyses

→ BEYOND PLANCK

Håvard Tveit Ihle's presentation

Limiting factors of LFI characterization

Limiting factors of LFI characterization

Gain reconstruction

• Large uncertainties in periods of dipole minima

European Commission

• Foreground emission contaminating gain reconstruction

\rightarrow BEYOND PLANCK

Eirik Gjerløw's presentation

Conclusions

European Commission

- The LFI differential scheme strongly <u>suppresses 1/f</u> <u>noise and other instabilities</u>, leading (*to first order*) to a simple 3-parameters noise model
- In-flight, LFI was <u>fully functional (22 radiometers out</u> of 22) and reached its sensitivity goal at end-mission
- <u>Systematic effects</u> are fully under control for Temperature. For Polarization gain <u>calibration</u> and <u>bandpass</u> uncertainties are a challenge at the largest angular scale scales
- The main criticality is the <u>combination of foregrounds</u> with instrumental systematics: This is at the heart of the BeyondPlanck approach
- BeyondPlanck features:
 - fully-iterative calibration
 - parametrisation of bandpasses
 - non-stationary noise

provide a <u>novel opportunity for data analysis of</u> <u>Planck and of other CMB experiments</u>

Funding

- "BeyondPlanck"
 - COMPET-4 program Ο
 - PI: Hans \cap Kristian Eriksen
 - Grant no.: 776282
 - Period: 2020
- Mar 2018 to Nov

Collaborating projects:

0

European Commission

- "bits2cosmology"
 - **ERC** Consolidator Grant Ο
 - PI: Hans Kristian Eriksen
 - Grant no: 772 253 Ο
 - April 2018 to March 2023 Period: Ο

"Cosmoglobe"

0

- **ERC** Consolidator Grant 0 PI:
 - Ingunn Wehus
- Grant no: 819 478 Ο
- Period: June 2019 to May 2024 Ο

