

Commission

Calibration

Eirik Gjerløw

BeyondPlanck online release conference, November 18-20, 2020 This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 776282

What is calibration?

Data model

Correlated noise-gain degeneracy

The BeyondPlanck framework

 $P(g, s^{\text{tot}}, n^{\text{corr}}, \dots \mid d)$ $P(q \mid R, g^{tot}, n^{cocorr}, \ldots)$

Sampling from conditional distributions

Sampling from conditional distributions

The BeyondPlanck framework

Sampling from the joint distribution

Absolute calibration:

European Commission

- Estimating the "true" value of the gain.
- Important for correctly estimating the total intensity emitted.

Relative calibration:

- Estimating the gain factor of one detector relative to another.
- Important for reconstruction of the polarization signal.
- Requires a much higher accuracy than absolute calibration.

Calibration sources

 $d_t = g_q s_t^{\text{tot}} + n_t^{\text{corr}} + n_t^{\text{wn}}$

European Commission

Attr: en:TxAlien - en:Image: Velocity0,70c.jpg, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=1066460

The polarization quadrupole

Methodology

 $g_{q,i} = g_0 + \Delta g_i + \delta g_{q,i}$

To be estimated using the orbital dipole

European Commission

To be estimated using the full signal

 $\sum_i \Delta g_i = 0 \quad \text{and} \quad \sum_q \delta g_{q,i} = 0$

Smoothing the time variable gain

Smoothing the time variable gain

Gain jumps

Smoothing the time variable gain

European Commission

PID

European Commission

Results

PID

Results

European Commission

Beyond PLANCK

PID

Correlated noise stripes

BP and other pipelines

22

WMAP differences

Difference between 70 GHz and 44 GHz

Conclusions

- A working calibration solution, sampled jointly with correlated noise and sky signal.
- Certain differences from previous pipelines, especially for 30 GHz.
- Some residual problems with correlated noise stripes, to be investigated further.
- Overall better fit to WMAP polarization data and should become even better with WMAP time-domain data included.

Funding

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 776282

"BeyondPlanck"

Ο

- COMPET-4 program
 - PI: Hans Kristian Eriksen
- Grant no.: 776282
- Period: Mar 2018 to Nov 2020

Collaborating projects:

- "bits2cosmology"
 - ERC Consolidator Grant
 - PI: Hans Kristian Eriksen
 - Grant no: 772 253
 - Period: April 2018 to March 2023

- "Cosmoglobe"
 - ERC Consolidator Grant
 - PI: Ingunn Wehus
 - Grant no: 819 478
 - \circ $\$ Period: $\$ June 2019 to May 2024

Questions?

European Commission

Beyond Commander

AND CCC X

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

JPL

Cosmoglobe Beyond

